

Prof. Marcos Zamboni

FATEC SBC. 2011

PARTE 1 - ISIS

1. INTRODUÇÃO

O Software Proteus VSM é atualmente considerado uma ferramenta essencial para estudantes e profissionais que desejam criar circuitos, simular e elaborar lay-outs de aplicações analógicas e digitais, inclusive microcontroladores.

Esta apostila envolve as técnicas básicas para o uso do software Proteus, feita em uma linguagem simples e abordando as funções básicas necessárias ao desenvolvimento do estudante, demais informações serão vistas no decorrer do curso.

Foi elaborada exclusivamente para os alunos do curso da FATECSBC e ETE Lauro Gomes, proibida sua reprodução total ou parcial, sob penas da lei.

1.1. CONCEITOS BÁSICOS

No Proteus existem quatro módulos que trabalham conjuntamente, como segue:

- a. ISIS- Inteligent Schematic input System (Esquemático)
- b. VSM *Virtual System Modeling*. (Modelamento Virtual, simulações e amimações)
- c. PRO-SPICE (Simulações utilizando instrumentos gráficos.)
- d. ARES *Advanced Routing and Editing Software* (Lay-Out com Roteamento avançado).

2. AMBIENTE DE TRABALHO

Abra o ambiente do ISIS através do ícone

ISIS 7 Professional

A Tela do ISIS parecerá conforme fig.01

Fig.1. Vista Geral.

2.1. VISTA PANORÂMICA

Esta janela localiza-se a esquerda da janela de edição, mas podemos deixar na condição de Auto-ocultar ou mudar para o lado direito da Janela de Edição, conforme segue abaixo:

 Image: Selector

 Image: Selecto

Fig.2.a. Auto-Ocultar.

Fig.2.b.

Para ativar o auto-ocultar basta clicar com o lado direito do mouse dentro do seletor de objetos e ativar a opção *Auto Hide,* para mudar de lado, basta colocar o mouse entre a coluna da vista panorâmica e a coluna do seletor de objetos e arrastar para o outro lado, conforme Fig.3.

Fig.3. Mudando a janela para o lado direito.

Na vista Panorâmica vemos uma borda Azul, que representa a borda da folha, e o retângulo verde representa a área em que esta sendo visualizada na janela de edição.

2.2. JANELA DE EDIÇÃO

Na janela de edição podemos observar um retângulo azul com um Target ao centro, este retângulo representa o tamanho da folha, que inicialmente possui o tamanho *A4*, na qual podemos modificar a qualquer momento do programa utilizando a seqüência abaixo:

System > Set sheet sizes... na qual aparecerá o modelo da fig.4:

Sheet S	ize Configuratio	on		? ×
<u>A4</u>	10in	Ьу	7in	<u>0</u> K
A3 A2	<>15in <>21in	bу Бу	10in 15in	<u>C</u> ancel
A1	32in	Ьу	21in	
A0	44in	Ьу	32in	
User	7in	by	10in	

Fig.4. Ajustando o tamanho da folha.

Basta clicar no tamanho que você deseja, e se necessário um valor diferente clicar em User e colocar as dimensões em Polegadas, sendo que o limite máximo é de 64 polegadas.

Nesta altura do campeonato você já percebeu que o Scroll no Mouse faz a tela se expandir ou reduzir o Zoom, ficando o centro do desenho o ponto onde se encontra o mouse, facilitando e muito o trabalho dentro do desenho, se você clicar com o Scroll vai perceber que o componente que você clicou fica acompanhando o mouse o tempo todo (se agarra a ele), para soltar o componente basta clicar o scroll novamente, podemos também alterar o zoom pelas teclas F6 e F7. Outros detalhes veremos mais a frente, agora vamos nos ater a conhecer os princípios para iniciarmos nosso primeiro circuito.

k	
⇒	
+	
LBL	
100	
44	
1	P L DEVICES
=	
= >-	
100	
2.5	
\odot	
2	
1	
$\overline{\mathbf{z}}$	
í –	
5	
0	
A	
S	
-	
C	
<u>e</u>	
ю <u>с</u>	
*	
\$	

2.3. SELETOR DE OBJETOS

Fig.5. Janela do Seletor.

Janela que utilizaremos para salvar a escolha dos componentes que serão aplicados na montagem do seu circuito.

2.4. SIMULADOR

Comandos para executar simulação do circuito montado, com as opções conforme fig.6.

Fig.6. Comandos do simulador.

2.5. COORDENADAS

Indica a posição do Cursor (Mouse) em um eixo de coordenadas, com valores expressos em th (mils ou milésimos de polegada). A principio podemos achar estranho este tipo de medida pois estamos acostumados com medidas em milímetros, mas vale a pena lembrar que todas distâncias entre terminais e dimensões de componentes seguem o padrão internacional em milésimos de polegada.

A origem (Eixo Zero) se encontra no centro da folha onde se encontra o Target azul, mas podemos colocar uma falsa origem clicando a letra "**O**" no ponto em que queremos iniciar a nova origem, observe que fica com a cor **Rosa** na falsa origem.

Fig.7 Visualização da falsa Origem.

2.6. GRID

O grid pode ser visualizado na tela por linhas formando um xadrez, pontos ou tela lisa, para isto basta teclar a letra G ou clicar no ícone conforme figura 8. Clique e veja.

Fig.8

Podemos mudar os valores do Grid na opção *View -> Snap XX th*, onde poderemos escolher valores de 10, 50, 100 e 500th (mils), conforme fig.9 ou pelos atalhos CtrlF1, F2, F3 e F4, observando que apenas F1 é acionado junto a tecla Ctrl, pois a tecla F1 sozinha é padronizada como Help. (Ajuda).

isis UI	NTITLED - ISIS	Professi	onal	
File	View Edit	Tools	Design	Grap
	🖉 <u>R</u> edraw	R		E
	Grid	G		F
	🕂 <u>O</u> rigin	0		
	🐐 X Cursor	Х		
+				-11
LBL	Snap 10th	i Ci	trl+F1	
	Snap 50th	F2	2	
44	Snap 0.1ir	n F3	;	
1	Snap 0.5ir	n F4	ļ	
8	💠 Pan	F5	i	
= >-	🔍 Zoom In	F6	i	
₩	🔍 Zoom Ou	t F7	1	
69	🔍 Zoom All	F8		
\odot	🔍 Zoom to /	Area		
V 1 I 1	<u>T</u> oolbars			

Fig.9. Grids.

2.7. BARRA DE FERRAMENTAS

As barras de Ferramentas estão alocadas na parte superior e na lateral esquerda da janela, mas podemos alterar suas posições bastando arrastá-las com o mouse. Para habilitarmos ou desabilitarmos a visualização das barras vamos a seqüência *View -> Toolbars...*onde aparecerá a janela da fig.10.

Show/Hide Toolbars
 ✓ File Toolbar ✓ View Toolbar ✓ Edit Toolbar ✓ Design Toolbar
<u> </u>

Fig.10. Habilitando a barra de ferramentas.

k
≯
+
LBL
÷÷,
1

Comandos Principais

Instrumentos, gráficos e acessórios (Gadnets)

Gráficos 2D (desenho).

Ferramenta de orientação dos componentes.

Fig.11

Cada ícone será explicado no decorrer dos próximos itens.

3.CRIANDO OS ESQUEMÁTICOS.

Ao criarmos um esquemático no ISIS, e salvarmos em uma pasta determinada, observamos que em um único esquemático são salvos diversos arquivos que são interligados, dentre eles destacamos:

.DSN Arquivo dos esquemáticos.

.DBK Arquivo de Backup

- .SEC Arquivo contendo esquemáticos exportados
- .MOD Arquivos de informações de projetos hierárquicos, subcircuitos, etc.
- .LIB Arquivos de Biblioteca
- .SDF Arquivo contendo os Netlists.

3.1. CRIANDO UM NOVO PROJETO (DESIGN)

Podemos criar um projeto de duas maneiras diferentes, como se segue.

A primeira é clicando no comando *File-> New Design*, teremos vários templates (Molduras ou Cabeçalho) para selecionarmos, mas nada impede de criarmos uma em particular.

Creat	te New Design				? ×
Sel	ect a template to ac	t as the default for th	ie new design:		
L A	اعت	isis (isis I	isis	
	default	Landscape A0	Landscape A1	Landscape A2	Landscape A3
	isis		isis	isis	isis
E	Landscape A4	Landscape US A	Landscape US B	Landscape US C	Portrait A0
	isis	<mark>isis</mark>	isis	isis	ISIS
1	Portrait A1	Portrait A2	Portrait A3	Portrait A4	Portrait US A
-					
C:M	Program Files\Labc	enter Electronics\Pro	oteus 7 Professional	\TEMPLATES\Land	scape A0.DTF
			[<u>0</u> K	<u>C</u> ancel

Fig.12 Janela de Templates disponíveis no ISIS.

Selecione um Template e de OK.

Os arquivos do Template são do tipo **.DTF**, onde podemos gravar todas as configurações, aparência do esquemático, etc, e estas configurações são acessadas através do comando **Template**, conforme figura 13.

	Template System Help				
1	Goto <u>M</u> aster Sheet				
	Set Design De <u>f</u> aults				
	Set Grap <u>h</u> Colours				
-	Set <u>G</u> raphics Styles				
	Set <u>T</u> ext Styles				
	Set Graphics Te <u>x</u> t				
	Set <u>J</u> unction Dots				
	Load Styles from Design				
	Apply <u>D</u> efault Template				

Fig.13 opções do Template

Goto Master Sheet Num projeto de varias "folhas", este comando acessa sempre a folha inicial (Master ou Principal), pois as configurações feitas no comando template ficam configuradas nela.

Set Design Defaults configura as cores do plano de fundo, grids, fontes padrão e animações.

Set Graph Colours..... Ajusta as cores nos gráficos e sinais.

Set Graphics Styles.... Permite ajustar espessura de linha, cor, preenchimento na área de edição.

Set Text Styles..... Altera todos os estilos de texto dentro do ISIS.

Set Graphics Text.... Configura os textos utilizados pelos graficos 2D.

*Set Junction Dots....*Configura tamanho e aparência dos Junction Dots que serão inseridos no projeto.

Load Styles from Design.... Copia as configurações dos itens anteriores para o ambiente atual pelo design (DSN).

3.2. CRIANDO UM HEADER BLOCK (Cabeçalho).

1. Selecione Template-> Go to Master Sheet

2. Utilizando as ferramentas 2D Graphics Text Mode,

Fig.14 Grafic Text Mode.

3. Clique no primeiro Ícone e desenhe o novo modelo de cabeçalho, na fig.15 criamos um modelo para ilustração.

Fig.15 Modelo para ilustração.

4. Clicando na letra A da ferramenta da fig.14, e em seguida em *TEMPLATE*, clique agora no ponto onde deseja inserir o texto, e aparecerá a tela abaixo (Fig.16):

C E GRAPHIC STYLES COMPONENT				
PIN	Edit 2D Graphics Text			
MARKER ACTUATOR INDICATOR	String:			
IPROBE	Justification: Font Attributes:			
TAPE GENERATOR	Horizontal: CLeft Centre Right Font face: Default Font			
TERMINAL	V.vertical: C Top I Middle Bottom			
2D GRAPHIC	Graphic's Style:			
WIRE	Global Style: TEMPLATE			
BUS WIRE BORDER	Line Width:			
TEMPLATE				
	Colour: V Follow Global? Strikeout?			
	Sample			
	ABC abc XYZ xyz 123			
	<u>D</u> K <u>C</u> ancel			

Fig.16 Tela de inserção do Texto TEMPLATE.

Caso após inserir o texto, desejar rotacionar, deletar ou inverter, clique no texto já feito com o lado direito do Mouse, e aparecerá a imagem que se segue.

Fig.17 Alterações no texto.

5. Podemos também inserir uma imagem no cabeçalho, um logo da Empresa, através da seqüência *File-> Import Bitmap*.

OBS: PARA MELHOR INSERIR COMPONENTES OU DESENHOS NA TELA PODEMOS CLICAR NA LETRA "X" E PERCEBER QUE O PONTEIRO DO MOUSE TOMA OUTRAS FORMAS, O MAIS COMUM SÃO AS LINHAS CRUZADAS PARA FAZERMOS ALINHAMENTO OU REFERENCIA DE PONTOS.

3.3. INSERINDO COMPONENTES

Depois de criarmos o TEMPLATE vamos iniciar um novo esquemático, inserindo objetos (componentes) na Janela de Edição.

Para inserirmos os componentes clique o ícone do Amp.Op. conforme figura 18.a, e em seguida clique no botão \mathbf{P} do seletor de objetos (fig.18.b) ou no telado, e teremos o resultado da fig.19.

Fig.18.a

Fig.18.b

Fig.19

No lado esquerdo temos a coluna *Devices* vazia, mas ao clicarmos duas vezes no componente desejado ele ira ser incluído nesta coluna criando a sua biblioteca para montagem do circuito desejado. Observe que na tela temos o esquema do componente e seu encapsulamento (Patern), que será utilizado no momento que transferirmos o esquemático para o Lay-Out.

Coloque alguns componentes e vamos agora inserir na janela de edição. Vá à coluna Devices e clique em um componente, depois vá na Janela de Edição e clique de novo, surgirá o componente nela, repita o processo até ter todos os componentes prontos para as ligações.

Clicando com o lado direito do Mouse no componente, podemos editá-lo, rotacionálo, deletá-lo ou modificá-lo conforme sua necessidade, vide fig.20., podemos também fazer o espelho com o atalho Ctrl + M com o componente já selecionado, e rotacionar utilizando o + e - do Num.

Fig.20

Podemos antes de inserir o componente mudar a posição ou inverter seu desenho, basta clicar no final da coluna devices onde temos os ícones de setas e o valor da rotação no centro, conforme fig.21, podemos visualizar esta mudança na vista panorâmica.

3.4. INSERINDO POWER E GROUND (Vcc e Gnd).

Para um circuito funcionar devemos colocar os terminais de alimentação VCC e GND.

Clique no Ícone das duas setas amarelas conforme figura 22, e veremos no seletor de objetos (TERMINALS) o Power e o Ground, clique e insira-os na tela. O terminal Power vem default com 5V.

Com o mouse próximo aos terminais do componente podemos ligá-los bastando arrastar o mouse com o botão esquerdo pressionado. Caso necessite retirar a ligação basta clicar na linha com o botão direito e deletá-la, em *Delete wire* conforme fig.23a.

F		
	P	TERMINALS
~~	DEFAULT	
	INPUT	
	OUTPUT	
=1>-	BIDIR	
107	POWER	
***	GROUND	
6.9	BUS	

Fig.22

Fig.23a. Deletando uma Wire

A ligação criada entre um componente e outro pode ser editada, clicando com o mouse na tecla direita na linha e teremos na janela que se abre o item *Edit Wire Style...*, conforme fig.23.b

Fig.23b. Editando o Estilo das ligações (Wire).

Podemos também inserir uma fonte de alimentação de modo diferente, clicando no símbolo do Gerador Senoidal conforme fig.24

Fig.24 Inserindo uma Fonte ou Gerador

No nosso caso clique em DC e teremos uma fonte de tensão conforme o símbolo na Vista Panorâmica. Para ajustarmos a tensão e o nome da Fonte, clique duas vezes no símbolo e teremos a janela que se segue:

Fig.25 Inserindo nome da Fonte e valor de Tensão.

OBS: A tensão inserida pode ser positiva ou negativa, dependendo da sua necessidade.

Podemos também observar na fig.24 que existem outras opções que podem ser utilizadas dependendo da sua necessidade.

3.5. INSERINDO INSTRUMENTOS.

Após termos montado nosso circuito, podemos agora inserir instrumentos para medição de valores como tensão, corrente, freqüência, etc..., para isto clicamos no ícone mostrado na figura 26 e escolhemos o instrumento necessário para a medição.

Fig.26 Instrumentos.

No seletor de objetos podemos observar os tipos de instrumentos para utilização. Vamos ver um exemplo de aplicação na figura 27. Para este modelo ajustamos o clock em 1kHz, para isto clique duas vezes no símbolo clock e coloque a freqüência que deseja.

Fig.27 Exemplo de aplicação do Osciloscópio.

Observe que neste exemplo os terminais possuem um desenho de cor azul, vermelho e cinza, eles indicam o estado do terminal, ou seja:

Vermelho = Nível lógico 1

Azul = Nível lógico 0

Cinza = Tristate ou desabilitado.

Observe que eles são dinâmicos, ou seja quando clicar na Simulação no modo Play observe que eles mudam de estado, conforme o circuito trabalha.

Podemos utilizar também um meio rápido de leitura de tensão e corrente, para isto utilizamos as pontas de prova conforme ícones da figura 28.

Fig. 28 Usos das pontas de prova, voltímetros e amperímetro.

Obs: Verifique neste exemplo que as pontas de prova de tensão possuem uma medida mais exata que dos voltímetros.

Ao inserir o Amperímetro, observe que este vem com a unidade A (Ampére) e por esta razão não medirá valores pequenos, devemos então clicar com o lado direito do mouse neste, e na linha *Edit Properties..* ajustar a escala para miliampéres ou microampéres, dependendo da leitura.

4. ANÁLISE GRÁFICA

Vimos até agora que no ISIS o esquema elétrico pode ser simulado, inserir instrumentos de medição, etc..., mas umas das partes não menos importante é a análise gráfica, ficando como observação que se você desejar modificar os parâmetros internos do componente use a pasta *Modelling Primitives*.

Existem no ISIS 13 tipos de Análises Gráficas disponíveis, são elas:

Análise Analógica: também conhecida como análise de Transiente, neste tipo de análise a tensão ou corrente é representada em função do tempo.

Análise Digital: nesta análise os valores binários (Zero e Um) serão representados em função do Tempo.

Análise Mista: (Mixed Mode),combina no mesmo gráfico a análise Analógica com a Digital.

Análise de Freqüência: conhecida como Análise AC ou Análise de Bode, mostra o gráfico de Ganho de Tensão e/ou Corrente em função da Freqüência, podemos também adicionar a fase dos sinais conforme veremos adiante.

Curva de transferência: (Transfer), Desenha curvas, fazendo a varredura de um ou mais geradores.

Ruído: (Noise), Desenha curvas do ruído de entrada ou saída em função da Frequência.

Distorção: (Distortion), Desenha gráficos de distorção da 2ª ou 3ª harmônicas em função da Frequência.

Análise por Fourier: (Fourier), Mostra o conteúdo das harmônicas de uma análise de Transiente, similar ao Analisador de Espectro.

Áudio: Realiza uma análise de transiente e gera um arquivo wave para reproduzir o resultado em uma placa de som.

Interativa: (Interactive), realiza uma simulação interativa e mostra os resultados no gráfico.

Conformance: Realiza uma simulação digital e compara com uma simulação feita previamente.

Varredura DC: (DC Sweep), Representa o ponto de operação do circuito, em função de uma varredura de parâmetros.

Varredura AC: (AC Sweep), Representa várias curvas de resposta de freqüência em função de uma varredura de parâmetros.

Vamos agora ver um roteiro para as análises:

- Desenhar o circuito a ser analisado.
- Inserir os Geradores de sinal necessários ao funcionamento do circuito.
- Inserir as pontas de prova de tensão ou corrente nos pontos a serem

analisados.

• Inserir o gráfico pelo ícone

- Inserir os TRACES pelo Graph->Add Trace...
- Configurar os parâmetros da simulação desejada.
- Execute a simulação pelo Graph ->Simulate Graph.

A SEGUIR MOSTRAMOS ALGUNS MODELOS DE ANÁLISE GRÁFICA.

4.1. ANÁLISE DE TRANSIENTE (analógica).

Vamos a um exemplo:

Fig.29. Análise Gráfica de um Filtro Passa Alta.

Fig.30. Escolhendo o tipo de gráfico e criando sua área.

Clique em ANALOGUE, e em seguida clique com o mouse e segure o botão, demarcando a área desejada.(Neste tipo de Gráfico a Tensão ou Corrente é representada em função do Tempo.)

Fig.31. Gráfico aplicado.

Podemos agora editá-lo, clique com o lado direito do Mouse no gráfico e teremos a figura 32.

ŀ	+	Drag Object	
		Edit Properties	Ctrl+E
	X	Delete Object	
	C	Rotate Clockwise	Num-Sub
	5	Rotate Anti-Clockwise	Num-Plus
	Э	Rotate 180 degrees	
	⇔	X-Mirror	Ctrl+M
	Ŷ	Y-Mirror	
	Þ	Decompose	
	2	Edit Graph	
-	. ~~	Add Traces	Ctrl+T
	3	Simulate Graph	Space
	5	View Simulation Log	Ctrl+V
		Export Graph Data	
		Clear Graph Data	
		Maximize (Show Window)	
	X	Restore (Close Window)	
		Play Audio	Ctrl+Space

Fig.32. Editando o Gráfico

Clique em *Edit Graph...*, e teremos o resultado na figura 33.

Edit Transient Gra	ph	?
Graph <u>t</u> itle:	ANÁLISE ANALÓGICA User d	efined properties:
<u>S</u> tart time:		^
<u>S</u> top time:		
Left Axis Label:		<u>ritulo</u>
<u>R</u> ight Axis Label:		
Options		NICIO (TEMPO)
Initial DC solution	n: 🔽	IM (TEMPO)
Always simulate:		IESTE CASO 1 SEGUNDO.
SPICE Optio		
Set Y-Scale		
		<u> </u>

Fig.33. Editando o Gráfico.

Para melhorar a resolução do gráfico podemos alterar o numero de pontos, para isto clique no SPICE Options da fig.34. e altere o valor conforme modelo abaixo:

Simulator Options						
Tolerances MOSFET Iteration Temperature						
Number of Steps: Truncation error over-estimation factor: Mixed Mode Timing Tolerance: Minimum Analogue Timestep:	(NUMSTERS) (TRTOL) (TTOL) (TMIN)	200 7 1e-09 1e-18				
Minimum Analogue Timestep: [TMIN] 1e-18 Ajuste aqui o numero de pontos para a plotagem do Gráfico.						

Fig.34. Ajuste do numero de pontos.(Steps).

Clique novamente no gráfico com o lado direito do Mouse e vá ao ícone

Agora vamos ajustar os valores do sinal, conforme fig35., que neste caso obtivemos o sinal de saída, repita o mesmo procedimento para o sinal de entrada V Entrada.

Add Transier	nt Trace	? ×
Name:	SAIDA	Irace Type:
Probe P <u>1</u> :	V Saida	Digital
Probe P <u>2</u> :	<none> V Entrada</none>	Noise
Probe P <u>3</u> :	V Saida	
Probe P <u>4</u> :	<none></none>	
Expression:	P1	Right
	Ponta que será	
	<u>obtido o sinal</u>	<u>O</u> K <u>C</u> ancel

Fig.35. Ajustando os parâmetros do sinal.

Após ajustado todos os parâmetros vamos agora gerar o gráfico, para isto vamos maximizar o desenho clicando no canto superior do gráfico, ou com o lado

direito do mouse no Ícone

Maximize..

Veremos agora o gráfico em tamanho grande, para executar o funcionamento clique

em Simulate ou tecla de Space do Teclado.

e teremos as curvas de entrada e saída.

ANALISE TRANSLENTE ANALOGICA - PROSPICE

Fig.36. Curvas de entrada e saída no modo Analógico.

4.2. ANÁLISE DE FREQUÊNCIA.

Façamos agora uma análise em Freqüência deste filtro, ajustando os parâmetros como se segue.(Este tipo de Gráfico mostra o Ganho da Corrente ou Tensão em função da Freqüência.)

Vamos inserir e renomear o gráfico, para isto faça os procedimentos anteriores, e para editar temos a Fig.37:

Fig.37 Editando o Gráfico de Resposta de Frequência.

Agora adicione os traços desejados na tabela Add Traces... como na fig.38.

Add Phasor T	race	? x
Name:	Saida	Irace Type:
Probe P <u>1</u> :	V Saida 💌	Digital Phaser
Probe P <u>2</u> :	<none></none>	Noise
Probe P <u>3</u> :	<none></none>	
Probe P <u>4</u> :	<none></none>	A <u>x</u> is:
Expression:	P1	Right
		Reference
	<u> </u>	<u>C</u> ancel

Fig.38 Ajustando dos Parâmetros de Saída.

Ajuste também os Parâmetros de Entrada, conforme modelo da fig.39.

Add Phasor 1	Ггасе	? ×
Name:	Entrada	Irace Type:
Probe P <u>1</u> :	V Entrada 🗸 🗸 🗸	Digital Digital
Probe P <u>2</u> :	<none></none>	Noise
Probe P <u>3</u> :	<none></none>	
Probe P <u>4</u> :	<none></none>	A <u>x</u> is:
<u>Expression</u> :	P1	Right
		Reference
	<u> </u>	<u>C</u> ancel

Fig.39 Ajustando os Parâmetros de Entrada.

Podemos também incluir a Fase do sinal de saída em relação a Entrada conforme fig.40, observando que a escala é colocada na direita do gráfico e é inserida a equação P1/P2.

(Add Phasor 1	race	? ×
	Name:	FASE	Irace Type:
	Probe P <u>1</u> :	V Saida 💌	direita do Gráfico
	Probe P <u>2</u> :	V Entrada 💌	Noise
	Probe P <u>3</u> :	<none></none>	
	Probe P <u>4</u> :	<none></none>	
	<u>E</u> xpression:	P1/P2	Right
	<u>Ajuste a</u> P1/P2	relação	Reference <u>Cancel</u>

Fig.40 Adicionando o gráfico da Fase.

Agora maximize o gráfico e tecle a barra de espaço para iniciar a simulação, teremos o resultado da fig.41.

Fig.41. Curva de Resposta de Frequência e da Fase.

Com o mouse clique em qualquer ponto da curva da Fase, e arraste, você vai perceber que uma linha (cursor) aparecerá e os pontos em que ela interceptar no gráfico ficará anotado na parte de baixo onde temos o texto FREQ e FASE, agora clique em um ponto da curva de Resposta e teremos no rodapé do gráfico valores de FREQ e GANHO EM dB; conforme fig.42.)

OBS: PARA TERMOS UM SEGUNDO CURSOR, BASTA SEGURAR A TECLA *CTRL*E CLICAR NO PONTO DESEJADO DA TELA.

Fig.42. Valores de FREQ e Ganho de Saída em dB.

Observe que podemos fazer alterações nas cores das curvas traçadas,tamanho de folhas e opções de simulação no item *Options*, na parte superior do Gráfico Maximizado.

No rodapé do gráfico podemos fazer alterações conforme a fig43.

Vamos agora ver uma análise de Carga em um capacitor:

1. Desenhe o circuito da Fig.44.

Fig.44. Circuito de Carga de um capacitor.

Para ajustar a Tensão de entrada clique duas vezes no ícone DC e teremos o modelo da fig.45.

Fig.45. Ajustes do Gerador.

Clique agora no wire (ligação) entre o resistor e o capacitor, para especificarmos as condições iniciais, vide fig.39.

Edit Label Delete Label
 Drag Wire Edit Wire Style Delete Wire
EEE Place Wire Label Show All Wire Labels Hide All Wire Labels
B Show net in Design Explorer ♀ Highlight net on Schematic

Fig.46

Clicando *em Place Wire Label* teremos a figura 47, na qual colocaremos a condição inicial que é IC=0 (corrente igual a zero).

Edit Wire Label	? <mark>×</mark>
Label Style	
String IC = Q Bolate Wetrical Vetrical Vetrical Vetrical Vetrical Vetrical Vetrical Vetrical Vetrical Vetrical Vetrical Vetrical Vetrical	Auto-Sync?
corrente incial igual a zero	
	K <u>C</u> ancel

Fig.47 Ajustes dos parâmetros iniciais.

Feito os ajustes, simule o gráfico conforme exemplos anteriores, e teremos a curva de carga conforme a fig.48.

Fig.48.Curva de Carga do Capacitor.

Teste agora seu conhecimento, faça a curva de descarga do capacitor, colocando em condições iniciais V=12V.

4.3. ANÁLISE DIGITAL

Para podermos fazer uma análise de Transiente Digital, montamos primeiramente o circuito, inserimos os geradores digitais (D PATTERN) através do ícone GENERATOR→ DPATTERN conforme fig.49.

Fig.49. Circuito digital para análise.

Clique no ícone do DPATTERN e teremos o modelo da figura 50, onde faremos as configurações necessárias.

Fig.50. Configurando o gerador.

Quando clicarmos em Specific pulse train e na janela Edit...

Teremos o modelo da fig.51.

Edit Pattern Olique Pattern niveis	e aqui para os s altos	A 1L		?
High (Weak) Float (Veak) Low				
0.00	12.000000000000	24.000000000000	36.000000000000	· · · · · · · · · · · · · · · · · · ·
clique em baixo para os niveis baixos				<u>0</u> K

Fig.51. Editando o trem de pulsos.

Agora clique em ok, e faça os procedimentos de ajustes do gráfico semelhante aos passos dos modelos anteriores, coloque no quadro *Edit Transient Graph* o valor de 10 em *Stop Time*, para podermos ver os

sinais mais juntos, lembrando que somente teremos sinal de saída se a chave de

Fig.52. Circuito e os estados dos pulsos e saída x tempo.

estado lógico estiver

em 1.

4.4. CURVA DE TRANSFERÊNCIA DC. (Transfer).

Este tipo de análise serve para levantamento de curva ou conjunto de curvas de um dispositivo semicondutor, embora possa ter outras aplicações.

Como exemplo vamos fazer a análise do circuito abaixo:

Fig.53. Curva de transferência DC de VBE e VCE.

Os procedimentos são os mesmos das curvas anteriores.

4.5. ANÁLISE INTERATIVA

Vamos agora neste tipo de análise inserir um elemento interativo, que no nosso caso é uma chave animada, ou seja podemos mudar o estado dela. Na fig.54 a chave esta aberta, portanto o capacitor C2 se carrega apenas por R4, veja a curva de carga na fig.55.

Fig.54. Circuito de carga de um capacitor

Para este circuito teremos a análise abaixo:

Fig.55. Carga do capacitor C2 através de R4.

Clique agora na chave para fechar, e teremos o circuito da fig.56.

Fig.56. Carga do capacitor com a chave fechada.

Clique na barra de espaço, e teremos o novo gráfico deste circuito, conforme fig.57.

INTERACTIVE ANALYSIS - PROSPICE					
File View Graph Options Help					
INTERACTIVE ANALYSIS					
n pp					
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00	9.00 10.0				
	SAIDA VC:12.0				

Fig.57. Curva de carga com alteração do tempo, devido ao fechamento da chave.
5. SIMULANDO MICROCONTROLADORES.

Um dos pontos fortes deste programa é sem duvida a simulação de microcontroladores, na biblioteca de componentes podemos observar a quantidade de microcontroladores, para tanto vamos fazer uma simulação de um microcontrolador da Microchip, o PIC16F628A. Veja como é bem simples o seu uso.

Primeiramente vamos montar no ISIS o circuito da fig.58.

Fig.58. Montando o circuito do microcontrolador no ISIS.

Observe que não foram utilizados chaves com pull-ups ou pull-downs, na realidade para simular poderemos utilizar uma ferramenta que se encontra na pasta de componentes na opção *Debbuging Tools*, a chave chama-se Logicstate ou Logictoggle, e o indicador de saída chama-se Logicprobe, mas se você quer ver os estados lógicos das saídas, basta apenas observar nos terminais dos componentes do microcontrolador, pois seus estados estarão representados por cores azul = nível 0 vermelho = nível 1 e cinza = tristate ou desligado.

Se você desejar um circuito mais aprimorado pode colocar leds animados, buzzer ou outros sinalizadores.

Agora vamos clicar no desenho do microcontrolador e teremos o modelo da fig.59. Na pasta amarela você carrega o arquivo .HEX, que foi gerado pelo MPLAB ou

outro Compilador. Ajuste também o clock do microcontrolador em *Processor Clock Frequency*.

Edit Component			? ×
Component <u>R</u> eference: Component <u>V</u> alue:	U1 PIC16F628A	Hidden: 🗌 Hidden: 🗌	<u>D</u> K Help
ajuste o clock aqui PCB Package: Program File:	DIL18 ?	Hide All 💌	Data
Processor Clock Frequency: Program Configuration Word:	11MHz 0x3F6B	Hide All 💌	<u><u> </u></u>
Advanced Properties: Randomize Program Memory?	• No •	Hide All 💌	
Other <u>P</u> roperties:	/	*	
clique aqui e local	lize o arquivo .hex do seu	programa.	
Exclude from <u>S</u> imulation Exclude from PCB <u>L</u> ayout Edit <u>a</u> ll properties as text	Attach hierarchy module Hide common pins	T	

Fig.59. Obtendo o arquivo .hex .

Fig.60. Visualizando o funcionamento.

Abaixo segue a rotina principal do programa em assembly para você conhecer.

MAIN

BTFSS BOTAO ;	testa o PORTA,0
B \$-1	
CLRC	; limpa o carry
MOVLW B'10000000'	; carrega o valor binário no W
MOVWF PORTB	; carrega W no PORT
CALL DELAY	
RRF PORTB	; Rotaciona o PORTB
B \$-2	; Volta 2 linhas

END

O interessante do simulador é que se você modificar e compilar novamente o programa, não necessita carregar novamente no ISIS, pois ele faz automaticamente contando que você não o tenha salvo em pasta diferente.

Podemos utilizar nos projetos os displays LCD, Teclados Matriciais, displays de 7 segmentos, motores animados dentre outros, fica por sua imaginação utilizá-los.

6. TOPICOS ESPECIAIS DO ISIS ESQUEMÁTICO.

Ao montarmos circuitos eletrônicos co m o ISIS nos deparamos com situações em que podemos simplificar o desenho utilizando ferramentas especiais como segue.

6.1.a. CONECÇÕES SEM FIO.

Imagine que você vai construir um circuito onde terá muitas ligações elétricas (wires) e isto poluirá o nosso desenho, dificultando a visualização. Podemos observar que na Fig.60 esta técnica foi aplicada. Vamos então utilizar uma ferramenta que se encontra no ícone mostrado na fig.61, clique em INPUT e coloque nos terminais de entrada, como leds, indicadores, etc....,depois em OUTPUT e conecteos aos pinos de saída do componente. Veja seqüência nas fig.62 a fig.65.

-			1	
	P	TERMINALS		
	DEFAULT			
	INPUT			
	OUTPUT			
F12-	BIDIR			
1~/	POWER			
1	GROUND			
6.9	BUS			
-				
_	-		-	

Fig.61. Ícone TERMINALS

Fig.62. Colocando terminais de Saída.

	Edit Terminal Label	
	Label Style	
×−>)	String: A Auto-Sync?	
	Botate	
	justify	
•	 ♦ Left ♦ Centre ♦ Middle ♦ Bottom 	
- 0		
	Dê um nome para o terminal OUTPUT	
		51

Fig.63. Dando Nomes aos terminais de Saída.

Fig.64. Dando nomes aos terminais de Entrada.

Fig.65. Circuito pronto para simulação.

Convém observar que o terminal de saída A está conectado ao terminal de Entrada A, podemos mudar em qualquer instante esta seqüência, apenas renomeando os terminais.

Os componentes animados podem ser modificados valores, por exemplo no Buzzer podemos mudar a freqüência do Audio, clique nele duas vezes e mude a freqüência de 500Hz para 1kHz, simule e veja o que acontece.

6.1.b. CONEXÕES BUS

Em certas condições as ligações entre os componentes fica mais elegante e clara utilizando o recurso BUS, no ícone H *BUSES MODE*, veja o exemplo na fig.66.

Fig.66. Traço do BUS entre os terminais de ligação.

Fig.67. Ligando os pinos ao BUS.

Agora que você ligou os pinos ao BUS, vamos nomeá-los para que os pinos possam estar conectados.

Vamos acionar o ícone **Wire Label Mode...**, clicando depois na ligação do primeiro pino (no nosso caso o pino 13 da fig.58.b.)

Fig.68. Colocando nomes aos wires do BUS.

Fica evidente que ao darmos os nomes para as conexões, deverá existir na outra extremidade do BUS uma conexão com o mesmo nome, ao qual estará eletricamente ligada.

6.3. LISTA DOS COMPONENTES UTILIZADOS NO ESQUEMÁTICO

Normalmente quando montamos o circuito no ISIS e o simulamos, a idéia seguinte é enviá-lo ao ARES para podermos criar um lay-out, quer seja manual ou roteamento automático, mas para isto temos uma ferramenta muito interessante que serve para a verificação dos componentes e se os mesmos possuem um Pattern (Package) para verificar se é possível a transferência direta. Veja o exemplo a seguir.

Imagine o circuito da fig.69.

Fig.69. Medida de freqüência.

Com o circuito montado clique em *Design* \rightarrow *Design Explorer*, ou simplesmente *Alt* + *X*, e teremos o resultado da fig.70 e71.

Fig.70. Acionando o Design Explorer

Frequency Meter - Physical Partlist Vie	w			
Y ← ⇒ L A ■ Ⅲ ROUT	Reference ➡ B1 ➡ C1 ➡ R1 ➡ R2 ➡ RV1	Type BATTERY CAP RES RES POT-LIN 555	Value 12V 1u 6k3 10k 1k NE555	Circuit/Package missing CAP10 RE540 RE540 missing DIL08

Fig.71. Lista de componentes e seus Packages associados.

Observe que neste caso dois componentes B1 e RV1 não possuem Package, logo não poderemos transferir adequadamente o esquemático para o **ARES** (Lay-Out), devemos corrigir, alterar ou criar um novo componente para tal.

O *Design Explorer* pode ser também utilizado para checar uma conectividade, como exemplo com um duplo clique no componente U1 na coluna direita obteremos as wires conectadas ao componente (net).

Frequency Meter - Physical Partlist View	w	-	1	-	
Y ← ← ▲ ▲ ▲ ▲ B1 (12V) → B2 (10k) → BV1 (1k) → U1 (NE555)	Name ← U1-CV ← U1-DC ← U1-SND ← U1-R ← U1-R ← U1-TH ← U1-TH ← U1-TR ← U1-VCC	Type Input Input Power Pin Output Input Input Power Pin	Number 5 7 1 3 4 6 2 8	Net #00005 #00002 GND #00000 #00001 #00004 #00004 #00004	

Fig.72. Conexões do componente U1 (555).

Clicando agora em uma das nets, e em seguida com o lado direito, teremos acesso ao *Goto Schematic Net*, onde nos levará ao circuito na ligação selecionada.

	Name	Туре		Number		Net	
_	← U1-CV	Input		5		#00005	
	← U1-DC	Input		7		#00002	
	← U1-GND	Power P	'n	1		GND	
	● U1-Q	Output		3		#00000	
		Input		4		#00001	
		Input Input	Netlict View		Alt+ N	1111112	
		Pov —	INCLISE VIEW		AILTIN		
			Find		Ctrl+F		
			Find Next		F3		
		Goto Schen			natic Sheet		
			Goto Schem	natic Part			
			Goto Schen	natic Net			
			Goto PCB P	art			
			Goto PCB N	let			
		Auto Minim		nize			

Fig.73. Verificando a conexão (net) no esquemário.

Observe que ao clicarmos no Goto Schematic Net teremos o esquema de volta e as conexões feitas no pino 6 (escolhido na fig.73.) aparecerão em vermelho, conforme visto na fig.74.

Fig.74. Verificação das conexões do pino 6 do U1. (em destaque).

7. CRIAÇÃO DE SIMBOLOS E COMPONENTES.

Vamos primeiramente acessar a biblioteca *Symbols*, clicando no ícone \square , da barra de ferramentas, clicando em seguida no botão P da tabela, e teremos o resultado mostrado na fig.75.

Observe que temos duas opções de bibliotecas:

System \rightarrow Bibliotecas que não podem ser modificadas.

Usersym \rightarrow Bibliotecas para criar símbolos para seu uso.

Fig.75. Biblioteca de símbolos utilizados.

Vamos agora seguir as seqüências para criar um Símbolo.

1. Clicar no ícone in a barra de ferramentas, e depois no botão L, abrirá a janela *Symbols Libraries Manager*, conforme fig.76.

Fig.76. Vista do Gerenciador de Bibliotecas de símbolos.

Nesta janela vamos selecionar a opção **Create Library**, e teremos o modelo que se apresenta na fig.77.

SS Create New Li	brary				×
Salvar em:	LIBRARY	, ← 🗈 💣 💷 +			
œ.	Nome	Data de modificaç	Тіро	Tamanho	
Locais	T4ALS.LIB	04/03/2009 11:41 A SALVAR SUA 04/03/2009 11:41	Arquivo LIB Arquivo LIB	521 KB 395 KB	E
	74F.LIB	04/03/2009 11:41	Arquivo LIB	228 KB	
	74HC.LIB	04/03/2009 11:41	Arquivo LIB	768 KB	
Área de	74HCT.LIB	04/03/2009 11:40	Arquivo LIB	492 KB	
Trabalho	74LS.LIB	08/12/2009 18:50	Arquivo LIB	943 KB	
	74S.LIB	04/03/2009 11:40	Arquivo LIB	387 KB	
Bibliotecas	74STD.LIB	08/12/2009 18:50	Arquivo LIB	551 KB	
	ACTIVE.LIB	08/12/2009 18:50	Arquivo LIB	337 KB	
	ANALOG.LIB	10/06/2009 16:53	Arquivo LIB	118 KB	
	ANALOGD.LIB	08/12/2009 18:50	Arquivo LIB	1.121 KB	
Computador	APEX.LIB	22/10/2005 17:19	Arquivo LIB	21 KB	
	ARM7.LIB	30/07/2009 14:32	Arquivo LIB	99 KB	
	ASIMMDLS.LIB	14/05/2008 11:27	Arquivo LIB	73 KB	
Rede	ASSMANN.LIB	21/09/2009 12:09	Arquivo LIB	375 KB	
	AVR.LIB	17/07/2008 15:22	Arquivo LIB	38 KB	
	AVR2.LIB	10/06/2009 16:53	Arquivo LIB	492 KB	
	BIPOLAR.LIB	03/12/2008 19:18	Arquivo LIB	174 KB	POR FIM, CLIQUE
	BRIDGE.LIB COLOQUE O NOME	DE/SUACBIBLIOTE	CAquivo LIB	163 KB	EM SALVAR
	BSTAMP.LIB	13/07/2009 10:38	Arauivo LIB	18 KB	-
	Nome: BIBLIOTECA TESTE				▼ Salvar
	Tipo: Library Files				Cancelar

Fig.77. Criação da nova biblioteca do usuário.

Após Salvar teremos uma sub-tela que nos questiona qual vai ser a quantidade máxima de itens, que você pode ajustar entre 1 e 4096, conforme Fig.78.

New Library	? ×
Maximum <u>E</u> ntries:	100
	<u>C</u> ancel

Fig.78. escolha do número de itens.

Symbols Libraries Manager	? ×
Source: Desth: SYSTEM ▼ BIBLIOTECA TESTE \$TPROBEP POT_4 Image: Construction of the second of the seco	
∢ 4 125 Items (75 Free). 6 Items (94 Free	>).
	Help
Delete Library Rock Library Eile Atribute	
	Liose

Fig.79. Copiando itens do System para a nova biblioteca. (Copy Items)

Observe que foi criada uma biblioteca com 100 itens, e se você observar verá que na fig.79. mostra que foram colocados 6 itens, restando ainda 94 para serem colocados ou criados.

Quando você copiar itens para sua biblioteca veremos uma tela confirmando tal evento, clique em YES para aceitar, em seguida em CLOSE.

Vamos agora clicar no ícone de preenchimento (2), 2D Graphic Closed Path Mode, ou no ícone sem preenchimento de cor (2), 2D Graphic Line Mode, clicando depois na opção COMPONENT, conforme a Fig.80.

Fig.80. Graphic Styles.

Agora, depois de feita a escolha, desenhe o componente com o cursor do Mouse, como no exemplo da fig.81.

Fig.81. Desenho do símbolo com preenchimento.

Agora vamos colocar os pinos, para isto clique no ícone **PIN** , e selecione a opção desejada, vamos utilizar alguns modelos conforme figura 82, depois de colocados clique duas vezes no pino e mostrará na tela o local para inserir a numeração e o nome do pino.

voce pode escolh habilitando ou nã	er a visibilidade clique 2x no pino clique 2x no pino	
podemos escolher o tipo elétrico do pino em questão, conforme tabela	Edit Pin ? Pin Name: ENTRADA Default Pin Number: 11 Draw body? ? Draw name? ? Rotate Pin Name? ? Draw name? ? Ejectrical Type: ? PS - Passive ^ TS - Iristate O P - Output ? D - Bidirectional ? Use the PgUp and PgDn keys to navigate through the pins Yerevious Next2 UK Cancel	
	Preencha a tabela conforme sua necessidade.	

Fig.82. Nomeando e habilitando os pinos.

O próximo procedimento será a inserção do Ponto de Referência ou Origem, para isto clique no ícone *Symbol Mode*, depois no botão *P*, e teremos a janela *Pick Simbols* conforme fig.83.

Fig.83. Obtendo a origem da biblioteca teste.

Fig.84. Inserindo a Origem.

Fig.85. Finalizando o componente criado.

Após colocado os pinos (terminais) no componente, e inserido o ponto de origem, vamos agora selecioná-lo e clicar com o lado direito do mouse para finalizar o símbolo, clicando em *Make Device*, conforme fig.**85**.

Executado, teremos a tela da fig.86, onde colocaremos as propriedades dos componentes, como Nome, Referência, Modulo Externo, etc....

lake Device	? ×
Device Propertie	25
	General Properties:
Enter the name for th	e device and the component reference prefix.
Device <u>N</u> ame:	TESTE1 Nome do componente criado
Reference Prefi <u>x</u> :	SN—Letra de Referência do componente.
Enter the name of an	Ex. Capacitor = C resistor = R y external module file that you want attached to the device when it is placed.
External <u>M</u> odule:	Arquivo contendo
	o circuito interno
Enter properties for c	destave Company Properties: omponent animation. Please refer to the Proteus VSM SDK for more information.
Symbol Name Stem:	
No. of States:	0
Bitwise States?	
Link to DLL?	
	<u>H</u> elp <u>≤Back</u> <u>Next≥</u> <u>O</u> K <u>Cancel</u>

Fig.86. Propriedades do Componente criado.

Após preenchermos as propriedades, vamos clicar em *Next*, e teremos a fig87.

Fig.87. Atribuindo ou editando um Invólucro para o componente.

Pick Packages					
Keywor <u>d</u> s:	<u>R</u> esults (42):				
	Device	Library	Description		
Match Whole Words?	APEX-DIPS	PACKAGE	APEX DIPS amplifier package		
	APEX-PD10	PACKAGE	APEX PD10 amplifier package		
Category:	APEX.PD12	PACKAGE	APEX PD12 amplifier package		
(All Categories)	APEX-SIP3	PACKAGE	APEX SIP3 amplifier package		
Connectors		PACKAGE	6 nin DIL IC 0 3in width		
Discrete Components	DII 08	PACKAGE	8 pin DILIC 0 3in width		
Integrated Circuits	DII 14	PACKAGE	14 pin DILIC 0.3in width		
Miscellaneous	DIL16	RACKAGE	16 pin Dtt IC 0 3in width		
	DIL18	PACKAGE	18 pin DIL IC. 0.3in width	Escolha a categoria a que pertence	
Tupe:	DIL20	PACKAGE	20 pin DIL IC. 0.3in width	seu componente	
	DIL22	PACKAGE	22 pin DIL IC. 0.3in width	seu componente	
[All Types]	DIL24	PACKAGE	24 pin DIL IC. 0.6in width		
Surface Mount Surface Mount (IDC70E1)	DIL24/28	PACKAGE	24/28 bin DIL IC. 0.6in width	Escolha o tino	
Through Hole	DIL24NAB	PACKAGE	24 pin narrow DIL IC, 0.3in width	Escolla o tipo	
Through Hole	DIL28	PACKAGE	28 pin DIL IC, 0.6in width		
Sub-category:	DIL28NAR	PACKAGE	28 pin narrow DIL IS, 0.3in width		
(All Sub esteration)	DIL40	PACKAGE	40 pin DIL IC, 0.6in width		
APEX Modules	DIL48	PACKAGE	48 pin DIL IC, 0.6in width		
DualInLine	DIL56	PACKAGE	56 pin DIL IC, 0.6in width	Escolha a sub-categoria	
LCC Sockets	DIL64	PACKAGE	64 pin DIL IC, 0.6in width		
Miscellaneous	DIL72	PACKAGE	72 pin DIL IC, 0.6in width		
MULTIWATT Modules	LCC-SKT28	PACKAGE	28 pin Leadless Chip-Carrier IC socket		
Pin Grid Arrays	LCC-SKT32	PACKAGE	32 pin Leadless Chip-Carrier IC socket	escolha o Invólucro, caso	
	LCC-SKT44	PACKAGE	44 pin Leadless Chip-Carrier IC socket	exista o que voce necessita.	
	LCC-SKT52	PACKAGE	52 pin Leadless Chip-Carrier IC socket	· · · · · · · · · · · · · · · · · · ·	
	LCC-SKT68	PACKAGE	68 pin Leadless Chip-Carrier IC socket		
	LCC-SKT84	PACKAGE	84 pin Leadless Chip-Carrier IC socket		
	MULTIWATT11V	PACKAGE	11 pin MULTIWATT package		
	MULTIWATT13V	PACKAGE	13 pin MULTIWATT package		
	MULTIWATT15V	PACKAGE	15 pin MULTIWATT package		
· ·	PENTAWATT	PACKAGE	5 pin Pentawatt transistor/IC package		
DIL06 Preview:	PGA64	PACKAGE	64 pin pin grid array (PGA), 100th pitch		
E 10	PGA68	PACKAGE	68 pin pin grid array (PGA), 100th pitch		
	SPDIL24	PACKAGE	24 pin narrow DIL IC, 0.3in width	Involucro escolhido.	
	SPDIL28	PACKAGE	28 pin narrow DIL IC, 0.3in width		
	T0220-5	PACKAGE	5 pin TO220 transistor/IC package		
	T03-8	PACKAGE	8 pin TO3 style IC package		
	T05-2	PACKAGE	2 pin TO5 style IC package		
	105-8	PACKAGE	8 pin TO5 style IC package		
	1071	PACKAGE	TU71 metal can IC package, 7 pins		
U.an	1072	PACKAGE	TU72 metal can IC package, 4 pins		
					<u>0</u> K

Fig.88. Escolhendo um invólucro (Package) já existente para o novo componente.

📴 Package D	evice									? ×
Packagings:	DIL06						-			
	P Default	nackage?	(Ad	Пв	ename De	lete Drde				
	1	passinger	3.196							
No. Of Gate≍		Gates (eler	nents) can b	e swapp	ed on the PCB	layout?				
Pin	Hidden	Common	Туре	A					0.3in	
CLOCK2	1		Passive	5			_			
ENTRADA	<u> </u>		Passive	1			_			
SAIDA	1		Passive	4			-	4 í		<u>(</u>) →
clock	1		Passive	2			_			
	f									- ò
Neste r	nodelo						_	o -		
utilizan	n os um						_			
Packag	e já						-	v - 3		4
existen	te na						_			
NCBibliote	eca do A	RES			Add Pin	Remove P	in			
que é o	DIL06.									
Swapable Pin	s:									
						Add				
	Obs	erve du	e os	_			4			
	pin	os que p	ossuem			Remov	е			
	con	ecção e	estão			- Replac	e			
	em	Branco.								
🔽 Use ARES	Libraries							Help	Assign Package(s)	Cancel

Fig.89. Invólucro já anexado ao novo componente.

Fig.90. Tela de confirmação do Invólucro.

Vamos agora inserir as Definições e propriedades deste componente, a figura a seguir vem da confirmação **Next** da anterior.

Nake Device		?
Component Properties	& Definitions add/remove properties t rameters for simulator mo <u>Name:</u> Description:	o the device. Properties can be used to specify idels, as well as information such as stock-codes Property Definition: TRACE Trace Events
Clique em New primeiramente	▲ Lype: ↓ Lype: ↓ Default <u>Action:</u> ↓ Sibility:	Irace Mode Hidden Property Defaults: (None) Hide Name & Value
- ITFMOD MODDLL	nponents in Old Designs	.? Next∑Kancel
MODEL PINSWAP PRIMITIVE SPICEFILE SPICELIB SPICELIB SPICEPINS		

Fig.91. Ajustes de Definições e propriedades.

ake Device	? <mark>- x</mark>
Device Data Sheet	t & Help File
You can link your device accessed via special but	to a data sheet (Acrobat .PDF file) and/or a help file. These can then be tons on the 'Edit Component' dialogue form. —Data Sheet:
Data Sheet Filename:	Nome do arquivo do Datasheet
Download <u>S</u> erver:	Servidor
Download Path:	Endereço do Site onde está o arquivo
Download <u>U</u> ser Id:	
Download <u>P</u> assword:	
CD <u>T</u> itle:	
<u>C</u> D Path:	
Hala Filer	Help Topic:
Conte <u>x</u> t Number:	
	,

Fig.92. Criando o endereço do Site do DataSheet do componente.

Device <u>C</u> ategory:	Ese	colher ou	criar un	na categori : Save Device To	a Library:
Analog ICs		-	New	USERDVC	
Device <u>S</u> ub-category:	Escolher ou cri	iar uma s	ub-categ	joria	
Amplifiers		•	New		
Device <u>M</u> anufacturer:	Fabricante				
ZAPS ELETRONICA		•	New		
Stock/Order <u>C</u> ode:					
	Numero de est	oque ou	codigo		
Device Description:					
Descrição	do Componente				
Advanced Mode (Ed	it Fields Manually)				
Device No <u>t</u> es:					
Anotações Gerais.					

Fig.93.Selecionando e descrevendo o componente criado.

Clique em OK e o componente estará criado.

8. CRIANDO COMPONENTE A PARTIR DE UM JÁ EXISTENTE.

Vamos primeiramente escolher um componente parecido com o componente a ser criado, como no exemplo da fig.94, que se trata de um circuito integrado 555, vamos modificá-lo alterando as posições dos terminais, para isto de um clique com o lado direito do mouse sobre o componente selecionado e vá até a linha *decompose*, conforme fig.95.

Fig.94. Função Decompose.

Fig.95. Aparência do componente decomposto.

Feito isto, agora o componente é apenas um desenho, podendo ser editado, retirado pinos ou acrescentado, conforme a necessidade. No nosso exemplo, vamos apenas modificar alguns terminais e salva-lo como novo componente, conforme fig.96.

Fig.96. Modificando o desenho de um componente.

Fig.97. Finalizando um componente.

Clicando em *Make Device*, teremos a imagem da fig.98.

Make Device	2	X
Device Properti	es	
	General Properties:	
Enter the name for the	he device and the component reference prefix.	
Device <u>N</u> ame:	NE555 TESTE	
Reference Prefi <u>x</u> :	U	
Enter the name of ar	ny external module file that you want attached to the device when it is placed.	
External <u>M</u> odule:		
Enter properties for c	Active Component Properties: component animation. Please refer to the Proteus VSM SDK for more information.	
Symbol Name Stem:		
<u>N</u> o. of States:	0	
Bitwise States?		
Link to DLL?		
	Help <u>K</u> Back Next <u></u>	cel

Fig.98. Inserindo nome do componente e prefixo.

Na realidade esta inserção do nome poderia ser feita de outra maneira, conforme mostrado na figura 96, mas esta tela é a sequência oficial do software.

Clicando em *Next*, teremos agora que escolher o tipo de encapsulamento que iremos usar, quer seja da biblioteca dos existentes ou da criação de um novo, ao qual veremos com detalhes quando tratarmos do *ARES*. Neste nosso exemplo utilizamos o mesmo, pois só modificamos os terminais quanto a sua posição, então vamos clicar em *Next*.

Make Device	CONTRACTOR OF STREET, STRE	? ×					
Packagings At	ribua o encapsulamento do novo (componente.					
The device you are making already has packagings defined. It is strongly recommended that you used the Add/Edit button to review these as they may no longer be valid if you have changed any of the device							
Add/Edit button to review these as they may no longer be valid if you have changed any of the device							
<u>A</u> dd/E dit							
	<u>H</u> elp <u>∡Back</u> Next≥	<u>DK</u> <u>C</u> ancel					

Fig.99. Escolha do encapsulamento

Podemos agora adicionar ou remover algumas propriedades do componente, conforme figura 100.

Make Device			? x			
Component Properties	8 D	efinitions				
Use the New and Delete keys t packaging for PCB layout and p and components costs.	o add/ barame	remove properties ters for simulator m	to the device. Properties can be used to specify odels, as well as information such as stock-codes			
MODFILE						
ITFMOD	*	<u>N</u> ame:	MUDFILE			
TTOL	\square	Des <u>c</u> ription:	LISA Model File			
		<u>Т</u> уре:	String 💌			
	H					
	-	<u>T</u> ype:	Hidden			
		·	Property Defaults:			
-	Ľ	Default <u>V</u> alue:	555.MDF			
<u>N</u> ew <u>D</u> elete]	⊻isibility:	Hide Name & Value			
Apply Default Properties to Components in Old Designs?						
	<u>H</u> elp	Back	Next≥ <u>□</u> K <u>C</u> ancel			

Fig.100. Propriedades e definições do componente criado.

Podemos também anexar o data sheet do componente conforme fig.101, para pesquisas futuras relacionadas ao componente.

evice Data Shee	t & Heln File	
		file) and/or a help file. These can then he
accessed via special bu	ttons on the 'Edit Component' di	alogue form.
Data Sheet Filename:	Data Sheet:	Se exstir Data
Download Server:		Sheet, coloque o
Download Path:		nome do arquivo
— Download <u>U</u> ser Id:		aqui.
Download <u>P</u> assword:		
CD <u>T</u> itle:		
<u>C</u> D Path:	ĺ	clique em next
	Help Topic	/
Uple Files		
<u>H</u> elp File:		
conte <u>x</u> t number.	lo.	/
		*

Fig.101. Inserção do Data sheet (arquivo em PDF).

Make Device	? ×
Indexing and Library Selection	
Device <u>C</u> ategory:	Save Device To <u>L</u> ibrary:
Analog ICs	USERDVC
Device <u>S</u> ub-category:	
Timers 🗸 New	
Device <u>M</u> anufacturer:	
(None)	
Stock/Order Code: Anexando as	categorias e sub-
categorias n	a biblioteca.
Device <u>D</u> escription:	
Single Precision Timer.	
	clique em OK
Advanced Mode (Edit Fields Manually)	
Device Notes:	
<u>H</u> elp <u>≤Back</u> Next≥	<u> </u>

Fig.102. Inserindo o componente na biblioteca por itens e categorias.

Clicando em OK temos agora o novo componente criado, conforme fig.103.

Fig.103. Componente novo criado ou modificado.

9. ESQUEMÁTICOS MULTI-FOLHAS (MULTI-SHEET)

Muitas vezes nos deparamos com circuitos muito grandes, que por maior que seja a folha utilizada fica faltando espaço. Para estas situações podemos criar outras folhas (SHEETS) nas quais podemos interligar eletricamente umas nas outras e fazer com que o circuito simulado se interaja em todas as folhas pertencentes ao circuito.

As folhas (sheets) podem ser classificadas hierarquicamente como **Parent Sheet**, **Root Sheet**, **Sub-Sheet e Child Sheet** que é o nível mais baixo das folhas.

O comando *Terminals Mode*, será utilizado para gerar as conexões entre as varias folhas do seu esquemático, conforme visto na Fig.104.

···	P	TERMINALS	Í	
-	DEFAULT			
0	INPUT			
=D-				
1~	POWER			
1 <u>~~</u>	GROUND			
63	BUS			
	1			

Fig.104 Terminais de conexão.

Para conexão entre as folhas utilizaremos básicamente os terminais INPUT e OUTPUT, para tanto vamos a um exemplo prático, conforme fig.105.

Fig.105. Inserindo os Terminais de INPUT e OUTPUT e atribuindo nomes.

Salve o desenho, e vá ao ícone *New Sheet*, teremos agora uma nova folha, observe no Rodapé escrito *Root Sheet2*, coloque agora os terminais de ligação INPUT E OUTPUT com os nomes iguais ao da folha anterior, para que este faça conexão ao correspondente, conforme fig.106.

Fig.106. Comandos sendo acionados na folha2.

Observe que acionamos os comandos na folha2, estes executam o circuito da folha1, retornando pelos terminais de Output da folha2.

OBS: PARA VOLTAR PARA AS FOLHAS (sheets) ANTERIORES OU POSTERIORES, UTILIZE *pg up e pg dn* do teclado.

9.1 SUBCIRCUITOS.

São básicamente circuitos criados em outra folha, e que estão ligados a circuitos de outra folha.

Vamos então abrir um exemplo já existente, através dos comandos:

File → *Open Designer* →*Samples* →*Graph Based Simulation* →*741 noise*, conforme fig.107.

Fig.107. Circuito obtido dos exemplos do ISIS.

Clique no operacional com o lado direito do mouse e vá até o item *Goto Child Sheet.* Ou CTRL + C, e teremos o modelo da fig.108, que é o circuito interno do operacional 741.

Fig.108. Circuito interno do Amplificador Operacional 741.

Conhecendo a dinâmica de um sub-circuito, vamos agora criar o nosso.

Fig. 109. Criando um sub-circuito.

Clique no ícone *Subcircuit Mode* você verá a tela acima, clique em DEFAULT e faça o contorno do bloco sub-circuito. Clique em INPUT e clique no contorno do bloco onde deseja colocar os terminais input, depois os de output. (Observe que só fixa na linha de contorno).

O próprio programa cria a nova folha de sub-circuito, para acessá-la basta teclar *Page Down*.

Na pagina (sheet) criada pelo programa monte o sub-circuito, como no exemplo da figura.110.

Fig.110. Criação do Sub-Circuito.

Fig.111 Simulando o bloco de Sub-Circuito.

10.EDITANDO BLOCOS DE COMPONENTES.

Fig.111.a. Usos dos blocos de edição.

Uma ferramenta muito simples de ser utilizada, os comandos de blocos se destacam apenas no momento que você seleciona um conjunto de componentes, e após selecionado você escolhe se quer copiar, mover, deletar ou rotacionar o bloco.

11. GERANDO A LISTA DE COMPONENTES E RELATÓRIO DE ERROS.

11.1. Electrical Rule Check

É uma ferramenta para verificação de dois tipos básicos de erro:

- 1. Pontos desconectados (UNDRIVEN)
- 2. Pinos sobrecarregados.

Vamos pegar um exemplo pronto do próprio ISIS.

File → *Open Design* → *Samples* → *Interactive simulation-> Bipolar Stepper Motor* e teremos o diagram da fig.112.

Fig.112. Diagrama elétrico de um circuito.

Fig.113. Electrical Rule Check...

Fig.114 Lista de possíveis erros.

11.2. GERANDO A LISTA DE COMPONENTES (BILL OF MATERIAL).

Para gerar a listagem cliquemos no ícone , ou conforme fig.115, que nos gera varias opções de listagem.

Fig.115. Bill of Materials com 4 opções de listagem.

Caso sua opção seja pelo ícone teremos a listagem em HTML conforme figura 96.

🔗 Bill Of Materials For Bipolar Stepper Motor - Proteus HTML Viewer									
File Edit									
	S								
Bill Of Ma	Bill Of Materials For Bipolar Stepper Motor								
Design Tit Author	le :	Bipolar Stepper Moto <none></none>)r						
Revision	:	<none></none>							
Design Cr	eated :	sábado, 21 de abril d	le 2001						
Design La Total Parts	st Modified: In Design :	segunda-feira, 17 de 5	julho de 2006						
1 Modules									
<u>Quantity:</u> 1	<u>References</u> M1	Value MOTOR-BISTEPPER	Order Code						
2 Resistors									
<u>Quantity:</u> 2	<u>References</u> R1, R2	<u>Value</u> 1	Order Code						
2 Integrated	l Circuits								
<u>Quantity:</u> 1 1	<u>References</u> U1 U2	<u>Value</u> L298 L297	Order Code						
		sexta-feira, 27 de mai	o de 2011 16:47:17						

Fig.116. Lista de componentes.

11.3. Gerando o Netlist.

Após termos criado um circuito, simulado e testado, devemos agora salvar seu Netlist para transferência dela para o Software ARES, de modo a construirmos o Lay-Out impresso.

Para isto devemos seguir a sequência abaixo:

Tools → *Netlist Compiler...* como segue na figura 117.

Fig.117. Netlist.

<u>O</u> utput: Mewer File(s) Mode: Mode: Correct Scope: Current Sheet ♦ Whole Design	Eormat: SDF Eedesigner Multiwire / Eag Spice Tango Vutrax Boardmaker Futurenet Racal Spice-Age RealPCB	Podemos escolher varios formatos para varios softwares existentes no mercado.
<u>D</u> epth: <∕> This Level ◆ Flatten	<u> </u>	

Fig.118. Escolhendo o formato de compilação para Netlist.

Para ficar mais fácil nosso trabalho, podemos transferir o NETLIST clicando no ícone \square , pelo menu da Fig.119, ou pelo teclado Alt + A.

Fig.119. Transferindo o Netlist para o ARES.

12. SIMULANDO NO ISIS.

12.1. Debuging Tools

Sem dúvidas um dos pontos fortes é a simulação de circuitos, utilizando equipamentos, e ferramentas especiais como o pacote Debuging Tools, portanto antes de simularmos, vamos conhecer algumas características deste pacote.

Na Fig.120 mostramos as ferramentas de pontas lógicas para entradas e saídas digitais, ficando o circuito muito mais elegante e fácil de simular, na figura seguinte, observamos uma ferramenta interessante, cuja finalidade é interromper

Uma contagem binária, temos varias escolhas de entradas, e ao clicarmos nele podemos ajustar o valor em que se dará a parada do contador, no exemplo temos um Digital Break ajustado para contar até0X06, o limite dele é 0X07, valor máximo para as 3 entradas digitais dele, monte o modelo abaixo e veja que interessante, quando ele chega no valor ajustado, o modo de simulação entra em PAUSE.

Fig.121. Aplicando um dos modelos de Digital Break.

Podemos também executar um Break em circuitos analógicos, utilizando o dispositivo RTVBREAK, conforme figura 122.,basta clicar nele duas vezes e ajustar o valor da tensão em que o sistema entra em PAUSE.

Fig.122. Ajustando um Break analógico.

Edit Component	-		? ×
Component <u>R</u> eference: VBT1 Trigger Voltage: Other <u>Properties:</u> Ajuste a tensão o PAUSE no simula	onde gerará a ador.	lidden:	<u>Q</u> K <u>C</u> ancel
 Exclude from Simulation Exclude from PCB Layout Edit all properties as text 	Attach hierarchy module Hide common pins		

Fig.123. Ajustando o valor da tensão que provocará PAUSE.

Observamos na fig.123 o ajuste do valor de tensão que fará com que o programa provoque uma Pausa.

Fig.124. Simulação em PAUSE.

Podemos utilizar também o Monitor de Tensão, a principio ele também gera um PAUSE,mas podemos ajustar o valor máximo e mínimo, e é muito utilizado quando queremos monitorar uma saída analógica onde os valores estão entre um mínimo e um máximo, vide fig.125 e fig.126.

Fig.125. Simulando com o Monitor de Tensão.

Fig.126. O valor de entrada foi menor que o estabelecido, ocorrendo uma Pausa.

Na Fig.126. poderemos ver o sistema na condição *PAUSE* pois a tensão ficou menor que a do monitor, na fig.127 veremos a condição contrária.

Fig.127. Pausa, devido a tensão ser superior a ajustada.

Vamos por último simular um monitor de corrente, para isto vejamos o circuito básico da fig.128.

Fig.128. Circuito básico para testar o monitor de corrente.

Clique duas vezes sobre o Monitor e teremos a fig.129,ajuste a corrente conforme sua necessidade, no item Trigger, coloque em *Suspend*, que faz o programa entrar em PAUSE, caso deixar em *Default* ou *Error* ele fará o log de erro.

E ID Comment			2 X
Edit Component			
Component <u>R</u> eference: Input Name:	IM2 Input Current	Hidden: 🗌 Hidden: 🗌	<u>O</u> K <u>H</u> elp
Minimum Current:	100uA	Show All 💌	Cancel
Maximum Current:	500uA	Show All 💌	
Trigger Action:	Suspend	Hide All 💌	
Advanced Properties:			
Message Text 📼	(Default) Coloque	offrager na	
Other <u>P</u> roperties:	condição	Suspend.	
		*	
Ajuste o seu range de			
corrente, conforme			
exemplo		~	
Exclude from <u>S</u> imulat Exclude from PCB <u>La</u> Edit <u>a</u> ll properties as	ion Attach hierarchy yout Hide common pi rext	module ins	

Fig.129. Ajuste do Range de corrente, e ação do Trigger.

Agora clique em PLAY do simulador e varie o potenciômetro para um valor de corrente maior que o estabelecido no monitor, e veja o que ocorre na Fig.130.

Fig.130. PAUSE devido a corrente ser maior que a estabelecida.

Fig.131. PAUSE devido a corrente ser menor que a ajustada.

12.2. Componentes Animados

Agora vamos conhecer alguns dos componentes animados existentes no módulo ISIS, eles estão na Biblioteca com a descrição *ACTIVE*, veja os modelos simulados abaixo.

Fig.132. Simulando alguns componentes animados.

Para a figura 132 foi modificado o Beta do transistor Q2, para tal basta clicar duas vezes sobre o componente, e na tabela inserir o Beta, conforme

figura.133,monte o circuito e clicando nas setas da lâmpada ajustável, veja o que acontece.

Edit Component				? ×
Component <u>R</u> eference: Component <u>V</u> alue:	02 PNP	Hidden: Hidden:		<u>O</u> K Help
Initially OFF? Spice Model:	? (Default)	Hide All		<u>C</u> ancel
Spice Model File: Advanced Properties:		🔄 Hide All	•	
Ideal forward beta		Hide All	-	
Coloque a	lqui o		* 	
novo Beta	<u>i deste</u>		-	
Transisto Exclude from Simulation Exclude from PCB Layout Edit all properties as text	r PNP. Attach hierarchy <u>m</u> odule Hide <u>c</u> ommon pins			

Fig.133. Alterando o Beta do Transistor Primitivo.

Se você montou o circuito acima, vai perceber que ao variarmos a intensidade da lâmpada ajustável, os componentes animados vão começar a agir, o led acenderá (temos varias cores de leds animados), o motor ira rodar, e conforme aumentamos a intensidade notamos que o motor aumenta a rotação, e quando o voltímetro do motor atingir valores próximos dos 12V o buzzer irá soar na freqüência de 500Hz pela placa de som do computador, freqüência esta que pode ser alterada conforme sua necessidade.

13. ATALHOS MAIS UTILIZADOS.

X → MUDA O CURSOR DO MOUSE PARA POSICIONAMENTO DE COMPONENTES.

- Ctrl + O Open Design
- Ctrl + S Save Design
- Q Quit Program
- S Salvar.

R	Redraw
0	Origem (clicando 2x cria-se a falsa origem).
G	Grid (Modelos).
F1	Help
Ctrl + F1	Espaçamento de Grid de 10 mils.
F2	Espaçamento de Grid de 50 mils
F3	Espaçamento de Grid de 100 mils
F4	Espaçamento de Grid de 500 mils
F5	Panorâmico.
F6	Aumenta Zoom
F7	Diminui Zoom
F8	Zomm preenchendo a Tela.
Ctrl + Z	Desfazer
Е	Localiza e Edita Componentes.
W	Auto-roteamento das conexões Elétricas.
Т	Busca pela Referência.
Ctrl + A	Gera o Netlist para o ARES.
Ctrl + V	Log do Netlist.
Ctrl + E	Editar o Gráfico
PgUp	Folha (Sheet) Anterior (Quando existir.)
PgDn	Próxima folha (Sheet). (Quando Existir.)
Alt + X	Design Explorer.
Ctrl + T	Adicionar Traço (Para modo Gráfico).
Space	Simular o gráfico.
F 12	Executar simulação.
Р	Inserir componente ou símbolo.
Ctrl + M	Faz um espelho no componente selecionado.
Tecla Num -	rotaciona o componente em sentido horário.
Tecla Num +	rotaciona o componente em sentido anti-horário.